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Abstract: We derive exact gravitational fields of a black hole and a relativistic parti-

cle stuck on a codimension-2 brane in D dimensions when gravity is ruled by the bulk

D-dimensional Einstein-Hilbert action. The black hole is locally the higher-dimensional

Schwarzschild solution, which is threaded by a tensional brane yielding a deficit angle and

includes the first explicit example of a ‘small’ black hole on a tensional 3-brane. The

shockwaves allow us to study the large distance limits of gravity on codimension-2 branes.

In an infinite locally flat bulk, they extinguish as 1/rD−4, i.e. as 1/r2 on a 3-brane in

6D, manifestly displaying the full dimensionality of spacetime. We check that when we

compactify the bulk, this special case correctly reduces to the 4D Aichelburg-Sexl solution

at large distances. Our examples show that gravity does not really obstruct having general

matter stress-energy on codimension-2 branes, although its mathematical description may

be more involved.
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1. Introduction

The emergence of the braneworld paradigm has spurred a lot of work in the exploration

of gravity in spaces with defects and/or boundaries of various codimension. Among the

higher-codimension setups, the codimension-2 branes [1]–[6] gained attention because in

asymptotically locally flat environs, their tension curves only the two transverse directions,

cusping them into a cone centered at the location of the brane. This behavior is modified

for different bulk asymptotics [4] and for branes residing on intersections of codimension-

1 objects [7, 8]. The attempts to use this ‘off-loading’ of the brane vacuum energy into

the bulk for alleviating the 4D cosmological constant problem [5, 9] have been found to

require the usual finely tuned adjustments of parameters once compactification is enforced

to produce 4D gravity at large distances. Indeed, to get an intrinsically flat brane one

must have very particular boundary conditions in the bulk, which requires adjusting1 the

bulk sector in some way to maintain the brane’s flatness upon a change of matter sector

parameters [4], [10]–[12].

Nevertheless the curiosity that tensional branes can remain intrinsically flat provoked

the study of setups with codimension-2 branes. Surveying the dynamics with a generic

stress-energy on a thin brane in an empty bulk, [13] asserted that there is an inconsis-

tency. They claimed that bulk Einstein’s equations describing codimension-2 branes with

δ-function stress-energy allowed only pure tension λ, with Tµν = −λgµνδ(2)(~y) in longi-

tudinal directions, and with vanishing transverse components. Otherwise, noted [13], the

solutions would have featured stronger, non-distributional singularities, that seemed ei-

ther unacceptable or difficult to contend with. To handle these problems frameworks with

1Such adjustments are by necessity global, in spite of the ‘local guise’ as a change of the conical angle;

the change extends to the end of the world in the bulk due to the peculiarities of ‘transverse’ 2 + 1 D

gravity.
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higher-dimensional operators in the bulk [14], thickened, regulated branes [15]–[17], and

combinations thereof were considered [18]. The common goal of these investigations was to

somehow isolate and tame geometric singularities in order to match geometry and brane

stress-energy.

These are all reasonable first-pass strategies, which however should be pursued care-

fully since such approaches could be dangerous, and even deceptive. Because gravity is

a theory with a cutoff, its short distance limits are very tricky. Indeed, pathologies with

distributional sources, similar to those encountered in codimension-2 setups [13]–[18] are

already familiar in usual General Relativity (GR). Perhaps the simplest example arises

from the Schwarzschild solution: in the linearized limit, one may be deceived to think of

it as a field of a δ-function source. In the full theory the short distance behavior is com-

pletely different from the linear theory. When the exterior geometry is followed inward,

at short length scales the strong nonlinear gravity effects replace the apparent timelike

singularity by a spacelike one, cloaking it with a horizon. Clearly, we do not throw away

the Schwarzschild solution just because it does not have a δ-function in its core. We can-

not insist on retaining a δ-function source because this source is itself an approximation,

obtained by coarse-graining over the interior structure of a realistic lump of energy. At

very short distances, this idealized form will be modified by corrections from interactions

including gravity and also from quantum mechanics.

Many more examples are provided by line sources in GR [19]–[21]. It is well known

that the singularities in that case are hard to even classify [19], and that the limiting pro-

cedures involving distributions that would reproduce the fields of static straight symmetric

δ-function sources are cumbersome and ambiguous [20]. Nevertheless, this has not ham-

pered deriving cosmic string solutions and exploring their dynamics [21]. This program

revealed that the thin strings in conical spaces with δ-function stress-energy are really an

idealization, and that in more realistic situations, when local strings wiggle or when they

are perturbed by local inhomogeneities of matter on them, they will develop long range

Newtonian potentials in transverse directions. Although this may modify the conical ge-

ometry at short and long ranges [21], as long as the asymptotic geometry very far from

the disturbance relaxes to a conical space, they can be viewed as legitimate string config-

urations. An extreme case in point are the black holes pierced by cosmic strings found by

Aryal, Ford and Vilenkin (AFV) [22], where the geometry of the local string asymptotes

a line distribution with a conical deficit far away from the black hole, but is tremendously

deformed near the hole by its strong nonlinear fields. While it was not immediately clear

that this solution is a limit of some distributional geometry, later on [23] it was shown how

to obtain it by a limiting procedure in the 4D gravitating Abelian Higgs model.

In light of this one may argue [24] that to understand the low energy limit of general

cosmic strings one ought to look for physically interesting solutions with conical structure in

the bulk, even if they include some short distance deformations. We take the view that the

example of [22, 23] is a concrete, if fortuitous, evidence in favor of [24], and we follow this

directive here. This immediately yields an unexpected prize: the family of exact metrics

for a black hole stuck on a codimension-2 brane. This family of solutions is a generalization

of the 4D AFV black hole on a string, and includes the very first explicit, exact localized
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black hole on a 3-brane,2 that can be used for computing black hole production and decay

rates at the LHC [28]. Although we do not have a realization of these solutions as a limit

of some distributional source interacting with a black hole, we expect that such a picture

should exist, possibly along the lines of the 4D resolution of the AFV solution as in [23].

Our black holes provide us with a direct clue how to find another family of solutions

with matter sources localized to a thin brane, where the curvature singularities remain

tame even when the matter stress energy is not pure tension. They are exact gravitational

fields of a relativistic particle stuck on a thin codimension-2 brane in D dimensions, and

include the fields of photons living on a 3-brane in a 6D flat spacetime. Such solutions can

be understood as a brane black hole boosted to a relativistic speed, in a way analogous

to the Aichelburg-Sexl solution of GR [29], and just like it carrying only a δ-function

singularity along its worldline. To obtain the shockwaves, we employ the cutting and

pasting techniques of [30, 31] which have already been applied to braneworld models in [32 –

34], rather than directly boosting the black hole. It turns out that our shockwaves look just

like the higher-dimensional shocks [35], which however live on a conical singularity in the

bulk, instead of a flat background. Specifically in the case of a 3-brane in 6D they depend

on the transverse distance from the source as 1/r2. To see how to recover 4D long range

gravity in this case, we close off the bulk by imposing periodic boundary conditions for

bulk fields, as a toy model of compactification. The shockwaves then correctly reproduce

the 4D Aichelburg-Sexl solution at distances larger than the period of compactification,

whose long-range fields vary as a logarithm of the transverse distance from the source.

Examining the black hole and its shockwave limit, we elucidate the short-distance scales

at which the nonlinear effects of the gravitational fields of brane-localized objects start to

distort the bulk, which should be useful in the search for regulated versions of codimension-

2 braneworlds with matter. This supports our view, motivated by [24], that gravity by itself

does not really obstruct having localized sources on codimension-2 branes, but may merely

obscure the way we see them.

2. Field equations and vacua

We start with a brief review of the field equations and vacuum solutions describing tensional

straight codimension-2 branes in D dimensions. We assume that gravity propagates in

the bulk as governed by the standard D-dimensional Einstein-Hilbert action. We further

assume that the stress-energy sources are completely localized to a codimension-2 object,

vanishing elsewhere in the bulk. This allows us to seek metrics of the form

ds2 = F2(y)gµν(x)dxµdxν + hab(y)dyadyb , (2.1)

where the brane is located at the center of the bulk at ya = 0, and is at rest. The field

equations in an empty bulk with a brane and a brane-localized stress energy tensor T µ
ν

2There exist black hole solutions on a 2-brane in 4D [25] but it is hard to extend them to higher

dimensions. Some interpretations of these difficulties were offered in [26], and recently some interesting

non-vacuum solutions with AdS4 ⊂ AdS5 asymptotics were studied [27].
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are

MD−2
D GA

B = T µ
νδ

A
µδB

ν 1√
det h

δ(2)(y) , (2.2)

where the coordinates xµ, µ ∈ {0, . . . ,D − 3} cover the brane worldvolume and the coor-

dinates ya, a ∈ {D − 2,D − 1} parameterize the two dimensions transverse to the brane,

while the capital latin indices count over all D coordinates. With the metrization (2.1),

the factor 1/
√

deth properly covariantizes the tensor density δ(2)(y). Here MD is the bulk

Planck mass and GA
B the bulk Einstein tensor, computed from the full metric (2.1). The

induced metric on the brane, from (2.1), is F2(0)gµν , and as long as F(0) is finite we can

choose F(0) = 1 by a rescaling of transverse coordinates xµ → xµ/F(0). Clearly, if F
diverges as we approach the brane at ya = 0 things may not be so simple. We will keep

this in mind in what follows. Also, in general we could have introduced the cross-terms

gaµ in the metric (2.1), for example by substituting dya → dya + Aa
µdxµ. However from

this expression it is clear that in the brane worldvolume theory such objects would behave

as towers of Kaluza-Klein (KK) vector fields. In what follows we will restrict our atten-

tion to the sector where they vanish, assuming that brane sources do not carry KK vector

charges. More general solutions with the vectors turned on exist, but are not needed for

our purposes here (see [1]).

Tracing (2.2), we obtain

MD−2
D R = − 2T

D − 2

1√
det h

δ(2)(y) , (2.3)

where T = T µ
µ, and using this we can break up (2.2) into formulas for the transverse and

longitudinal Ricci tensor components with respect to the brane worldvolume:

MD−2
D Ra

b = − T

D − 2
δa

b
1√

deth
δ(2)(y) , (2.4)

MD−2
D Rµ

ν =
(

T µ
ν − 1

D − 2
Tδµ

ν

) 1√
deth

δ(2)(y) , (2.5)

alongside the vanishing cross-terms, Ra
µ = 0. Note that the source on the RHS of the

longitudinal equation (2.5) is traceless: indeed, if we split the brane stress-energy as the

sum of the tension, representing the vacuum energy of the brane matter, and the finite

wavelength matter contributions, T µ
ν = −λδµ

ν + τµ
ν respectively, we immediately see

that the tension, being a part of the trace of T , immediately cancels from the RHS of (2.5).

The longitudinal Ricci tensor components are only sourced by T µ
ν − Tδµ

ν/(D − 2) =

τµ
ν − τδµ

ν/(D − 2) for any tension λ. On the other hand, the sources for the transverse

components of the Ricci tensor Ra
b always depend on λ explicitly. This feature of the

field equations (2.2), (2.4), (2.5) is the key ingredient of the magic of ‘off-loading’ brane

vacuum energy into the bulk [1, 9]. While it does not guarantee that the induced metric

on the brane will always be independent of λ, it does point out that at large distances

along the brane the induced metric should be essentially independent of λ when the bulk

is asymptotically locally Minkowski.
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Interesting solutions of (2.2) which illustrate this desensitization of the induced geome-

try from λ are easy to find. Suppose that the matter stress-energy vanishes, τµ
ν = 0. Since

the Ricci tensor is identically zero away from the brane, the field equations (2.2) admit

D-dimensional flat space vacuum with the Minkowski metric as a solution. We factorize

the spacetime as a direct product of a D − 2-dimensional Minkowski and a 2D locally

Euclidean and find that the continuity everywhere away from the brane ensures that the

warp factor is F2 = 1 identically. Thus the metric is exactly

ds2 = ηµνdxµdxν + δab(y)dyadyb , (2.6)

where the 2D metric δab(y)dyadyb is locally Euclidean, but the domain of its definition

has to be picked in order to satisfy the equation (2.4) on the brane at ya = 0 as well as

away from it. A complete cover of the transverse space is provided by polar coordinates,

in terms of which the metric becomes

ds2 = ηµνdxµdxν + dρ2 + B2ρ2dφ2 , (2.7)

where φ ∈ [0, 2π] and B is picked to solve (2.4). This yields [36]

B = 1 − λ

2πMD−2
D

. (2.8)

Thus the longitudinal space covered by the coordinates ρ, φ is a cone. It is obtained from

the flat disk that would solve (2.2) in the λ = 0 limit by extricating a wedge of angular

opening 2π(1 − B) = λ/MD−2
D , identifying the edges of the cut and rescaling the polar

angle according to φ → Bφ [1]. The induced metric on the brane remains flat, ∝ ηµν ,

despite the fact that the brane carried vacuum energy density λ 6= 0.

It should be clear from this that even if the vacuum brane (2.7) is perturbed by a lo-

calized matter source described by a τµ
ν 6= 0 of compact support, the long distance brane

geometry may still remain essentially independent of λ as long as the brane straightens out

far from the perturbation. Namely, the metric will receive dramatic gravitational correc-

tions (at the very least) near the matter source, changing its short distance behavior. Such

gravitational short distance corrections should be expected (and were already pointed at

in [13, 14]): those effects reflect the nonlinear structure of gravity, accounting for spacetime

distortions as do the strong fields near black holes. However if the brane straightens out far

from the brane matter perturbations, the bulk geometry far from the brane will converge

to the conical Minkowski form where the deficit angle eats up the tension. One may expect

that the convergence of the bulk geometry to the vacuum form of (2.7) is rapid, by using

the Birkhoff theorem in higher-dimensional gravity and accounting for the deficit angle

by appropriately renormalizing Newton’s constant. Indeed, if we assume that a regulated

perturbed brane exists, then far from the perturbation the field should converge to that

of a point mass with a deficit angle. In D dimensions, the gravitational potential of such

an object would fall off as 1/rD−3, where r is the radial distance away from it, and hence

the geometry should rapidly return to that of (2.7). The difficulties with this description

should get serious only close in, when nonlinear effects cannot be disregarded. Thus the
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scale where the corrections kick up should be on the order of the gravitational radius of

the matter perturbation. In the next section, we will confirm this intuition by deriving the

exact black hole on a codimension-2 brane, and determining its gravitational radius r0.

3. Black holes threaded by codimension-2 branes

It is clear from field equations (2.2), (2.4), (2.5) that away from the brane the D-dimensional

Schwarzschild metric,

ds2
D = −

(

1 − (
r0

r
)D−3

)

dt2 +
dr2

1 − ( r0
r )D−3

+ r2dΩD−2 , (3.1)

remains a solution. Here r0 is the size of the black hole horizon, determined by its mass,

and dΩD−2 a line element on a unit D − 2 sphere SD−2. The question is, how is the black

hole solution altered in the presence of the brane. In general, even for thin branes whose

stress-energy tensor may be imagined to be ultralocal, the presence of the brane may affect

dramatically the black hole horizon, and render the explicit determination of the geometry

describing a black hole on a brane extremely hard [25, 26].

However, this problem greatly simplifies in the codimension-2 case. To illustrate why,

let us first discuss a black hole on a string, given by the AFV solution [22]. Finding solutions

of Einstein’s equations for a combined gravitational field of some distribution of matter

threaded by a string is very easy if the matter distribution has an axial symmetry. In this

case, all one needs to do is to orient the string along the axis of symmetry, and account

for its presence by cutting a wedge out of the polar variable φ, which runs around the

symmetry axis. In this way, one obtains the solution whose geometry at infinity approaches

the conical space of the string, and close in it gets modified by the gravity of the lump

of matter [21, 22]. The AFV black hole is an extreme example of this trick. One simply

starts with the 4D Schwarzschild solution, picks the axis, say, in the North-South direction,

along the rays θ = 0, π of the S2 transverse to the worldline, and replaces the usual S2 line

element by dΩ2 = dθ2 + B2 sin2 θdφ2, choosing B to still satisfy eq. (2.8) as in the absence

of the black hole. Then the Gauss-Bonnet theorem guarantees that the full geometry

has the same deficit angle as the string, 2π(1 − B). One can quickly see that this must

be the case because far from the hole, ds2
4 → −dt2 + dr2 + r2(dθ2 + B2 sin2 θdφ2). Upon

substituting z = r cos θ, ρ = r sin θ this can be rewritten in cylindrical coordinates as ds2
4 →

−dt2 + dz2 + dρ2 + B2ρ2dφ2, i.e. precisely a locally flat metric with a conical singularity.

We use exactly the same trick to write down the solution describing a black hole on

a codimension-2 brane in D dimensions. This works because, as we have discussed in the

previous section, the field of any thin codimension-2 brane in D dimensions is given by the

locally flat metric with a conical singularity. Thus we can just take the higher-dimensional

Schwarzschild solution, pick an axis and thread a codimension-2 brane along the axis by

cutting out a wedge from the range of the polar angle around this axis, with the opening

adjusted to match the tension of the brane according to (2.8).

This ‘brane surgery’ is most easily performed when we start with the black hole solution

in uniform coordinates, in terms of which the metric is of the form ds2
D = −Fdt2+Gd~x2

D−1.

It is straightforward to put the solution (3.1) in this form. We replace the radial variable
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r by R according to

r = R
(

1 +
rD−3
0

4RD−3

)
2

D−3
, (3.2)

which yields

ds2
D = −

(4RD−3 − r0
D−3

4RD−3 + r0
D−3

)2
dt2 +

(

1 +
1

4
(
r0

R )D−3
)

4
D−3

(

dR2 + R2dΩD−2

)

, (3.3)

with conformally flat spatial slices. Next we pick a D − 3-dimensional spatial hypersur-

face of symmetry (as opposed to merely an axis of symmetry in the 4D AFV case), and

transform to cylindrical polar coordinates defined by it, such that ~x are coordinates along

this hypersurface, and we coordinatize the two transverse directions by the transverse

distance ρ and the polar angle φ. With these coordinates, we have R2 = ~x2 + ρ2 and

dR2 + R2dΩD−2 = d~x2 + dρ2 + ρ2dφ2. Finally, to thread in a codimension-2 brane with

tension λ, we cut a radial wedge in the ρ, φ plane of opening 2π(1 − B) = λ/MD−2
D , ac-

cording to eq. (2.8), identify the edges, and rescale the angle φ to φ → Bφ, so that after

rescaling its range is restored to the interval [0, 2π). Our final metric is therefore

ds2
D = −

(4(~x2 + ρ2)
D−3

2 − r0
D−3

4(~x2 + ρ2)
D−3

2 + r0
D−3

)2
dt2 +

(

1+
1

4
(

r0
2

~x2 + ρ2
)

D−3
2

)
4

D−3
(

d~x2+dρ2+B2ρ2dφ2
)

,

(3.4)

and it represents a black hole, of horizon size r0, stuck on a codimension-2 brane. In fact,

we should note that it is straightforward to go back to the spherical polar coordinates

for the metric (3.4) with the brane included. All we would do is basically return to the

Schwarzschild metric (3.1), but with the line element dΩD−2 on the unit sphere SD−2

replaced by the line element d`2
D−2 = dΩD−3 + B2

∏D−3
k=1 sin2(θk)dφ2, which is the metric

on a unit D − 2-dimensional sphere but with a wedge of opening 2π(1 −B) removed from

the polar angle φ. This means that the spatial surfaces of constant radius are topologically

spheres, pinched on the brane by the tension-induced deficit angle. We should also note

that among the black hole solutions (3.4) probably the most phenomenologically interesting

one is D = 6, where our solution models an exact small 6D black hole residing on a 3-brane

in two extra dimensions,

ds2
6 = −

(4(~x2 + ρ2)3/2 − r0
3

4(~x2 + ρ2)3/2 + r0
3

)2
dt2 +

(

1 +
1

4
(

r0
2

~x2 + ρ2
)3/2

)4/3 (

d~x2 + dρ2 + B2ρ2dφ2
)

,

(3.5)

which can be used for precise and explicit calculations of production and evaporation of

quantum black holes at the LHC, as in the studies of [28].

Let us (very!) briefly review some of the properties of the black hole family (3.4).

As in the case of the AFV solution [22], the horizon distance r0 is an integration con-

stant in (3.4), and as such independent of brane tension. So for a fixed r0 the sur-

face gravity and the Hawking temperature of the hole are completely independent of the

brane. The Euclideanized version of the solution (3.1) then readily yields that the Hawk-

ing temperature, defined by the period of the Euclidean time, is TH = D−3
4πr0

. However,

the presence of the brane alters the relation between the horizon size and the mass of

– 7 –



J
H
E
P
0
3
(
2
0
0
6
)
0
7
7

the black hole controlling its inertia, as measured by the hole’s momentum integrals at

asymptotic infinity. More formally, the formula for the ADM mass of the black hole is

corrected because of the deficit angle. To see this, we can look at the linearized form

of the hole metric (3.4), which, using spherical polar coordinates, dΩD−2 → d`2
D−2, is

ds2
D = −

(

1 − (r0/R)D−3

)

dt2 +

(

1 + 1
D−3(r0/R)D−3

)

(dR2 + R2d`2
D−2). So the mass of

the hole is [37]

m =
D − 2

2
MD−2

D rD−3
0

∫

angles

d`D−2 . (3.6)

Since angles run over a D − 2-dimensional sphere with a deficit angle, the integral is given

by ΩD−2B, where ΩD−2 = 2π
D−2

2 /Γ(D−2
2 ) is the volume of a unit SD−2 and B is the

deficit angle parameter in (2.8). Introducing a shorthand αD = (D − 2)ΩD−2/2 for the

fixed dimensionless quantities, the mass is3

m = αD MD−2
D B rD−3

0 . (3.7)

Inverting, we find that the horizon size r0 is expressed in terms of the ADM mass m

according to r0 = m1/(D−3)/(αDMD−2
D B)1/(D−3), or, using (2.8),

r0 =
( 2π

2πMD−2
D − λ

)
1

D−3
( m

αD

)
1

D−3
. (3.8)

Now, it is clear from the black hole solution (3.4) and its linearized form that the strong

gravity effects and nonlinear corrections begin to affect the geometry at distances of the

order of r0 from the hole. Because of the equivalence principle, however, this will remain

true even for sources which have not yet collapsed, but may be stabilized by some matter

interactions. From formula (3.8) it is clear that the actual scale where this happens depends

not only on the mass sourcing the field, but also on the tension of the brane. For a

fixed value of mass, nonlinear gravity effects could start at distances much greater than a

naive estimate of the gravitational radius based on a ‘braneless’ higher dimensional gravity,

∝ M−1
D (m/MD)1/(D−3), because of the conical enhancement of the gravitational force, as is

manifest in (3.8). The closer the tension is to the bulk scale, which would be expected by

naturalness, and needed to avoid a large 4D vacuum energy upon compactification [38], the

larger the gravitational radius of the mass m! In effect, the codimension-2 brane behaves

as a lightning rod for gravity: the deficit angle lessens the bulk volume near the brane,

which hampers dilution of gravitational force with distance. Note however that we confirm

the intuition that a version of the higher-dimensional Birkhoff theorem still applies for

masses on a codimension-2 brane, despite the presence of the brane. The potential drops

off as claimed, according to 1/rD−3, although the scale beyond which the nonlinear effects

are negligible may be pushed out to distances À M−1
D (m/MD)1/(D−3). In practice, this

implies that in the attempt to regulate the brane in order to deal with the effects of strong

3Note that the Bekenstein-Hawking entropy ∼ area law for black holes, S ∼ A/GN , is properly upheld.

Plugging in this equation the area, A ∼ rD−2
0 , and the coupling on the cone, GN ∼ 1/(MD−2

D B), we find

that S ∼ (r0MD)D−2B, and so THS ∼ S/r0 ∼ rD−3
0 MD−2

D B, or therefore THS ∼ m (using eq. (3.7)).
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gravity of some object of mass m as in [13]–[18], one must thicken up the brane to exceed

the gravitational radius of the mass m, as given by (3.8), in order to be able to treat

gravity perturbatively, and depending on the brane tension this scale could be very large.

Gravitational shockwaves, which we turn to next, provide us with further examples of this

gravitational lightning rod phenomenon.

4. Gravitational shockwaves

As we have seen above, the nonlinear gravitational corrections at short distances cannot

be neglected any more at scales comparable to the gravitational radius r0 of the source.

Although this distance may depend on the mass in a complicated way (3.8) because of

the environmental effects, it really comes about because the mass of the source breaks

the conformal symmetry of the background. Clearly, the smaller the mass, the shorter

the scale where gravitational nonlinearities become large. This immediately points how

to regain some level of mathematical control over the nonlinearities in the theory, while

continuing to explore nontrivial sectors of gravity. The trick is to try to suppress the scale

at which conformal symmetry is broken, while keeping a nontrivial stress-energy source to

generate gravity. Clearly, restoring conformal symmetry means looking at sources whose

stress-energy has negligible or vanishing trace. Hence we should look at the gravitational

fields of very fast particles on the brane. Their gravitational field will be sourced by

the momentum, and the distance scale below which the nonlinearities are significant will

be arbitrarily short, controlled by the ratio of the rest mass to the momentum of the

particle. In the ultrarelativistic limit, when the rest mass vanishes, we would expect that

the linearized gravity description would remain valid down to extremely short distances,

in which case we should be able to retain the thin-brane description of relativistic stress-

energy as a δ-function source. Indeed, this is precisely how the gravitational shockwave

solutions work in conventional GR and in the theories with branes [29]–[34]. The relativistic

limit suppresses the scale where nonlinearities kick in by restoring the conformal symmetry

of the matter sector, which in turn allows a linear description all the way to arbitrarily

short distances.

To confirm this intuition, we construct the explicit form of the gravitational shock-

waves, sourced by relativistic particles, such as a photon, on a codimension-2 brane. To

do so, we could have followed the road Aichelburg and Sexl set out on in their seminal

paper [29]: take our black hole (3.4), linearize it, and boost it until its worldline becomes

null (but ensure that in this process we properly gauge-fix the linearized solution so that no

non-physical divergences are encountered [29]). However, a simpler method is to note that

because of the Lorentz contraction generated by the boosting, the gravitational field of the

relativistic particle will be completely confined to the transverse plane, orthogonal to the

instantaneous location of the particle. Hence, before and after that surface, the space will

be vacuum, and the only nontrivial information about the field will be contained in the

junction conditions at this surface, which separates these vacuum regions. This enables us

to use the cutting and pasting technique of [30, 31], which has already been successfully

used in braneworld models [32 – 34].
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So, as in those cases, we start with the vacuum codimension-2 brane solution (2.7),

pick a direction on the brane and switch to lightcone coordinates along it. To encode

the shock wave, we put a relativistic particle along one of the null lines, say u = 0,

and introduce a discontinuity in the orthogonal null coordinate v by replacing dv in the

metric by dv − f(~x⊥, ρ, φ)δ(u)du [30]–[34]. Here ~x⊥ denotes the spatial dimensions along

the brane which are orthogonal to the direction of motion of the relativistic source. The

shocked metric then becomes

ds2
D = 4dudv − 4δ(u)fdu2 + d~x2

⊥ + dρ2 + B2ρ2dφ2 . (4.1)

Here f(~x⊥, ρ, φ) is the shockwave profile, which only depends on the spatial directions

transverse to the motion, ~x⊥ along the brane and ρ, φ away from it. Further, we add to

the brane stress-energy tensor T µ
ν the contribution from the momentum of the relativistic

particle, given in terms of the shocked induced brane metric gD−2 µν in (4.1) by [30]–[34]

τµ
ν =

2p
√

gD−2
gD−2 uv δ(u) δ(D−4)(~x⊥) δµ

v δu
ν . (4.2)

What remains is to substitute (4.1) and (4.2) into the field equations (2.4), (2.5) and work

out the field equation for the shockwave profile f . Because τµ
ν is traceless, it does not

enter in the transverse field equations (2.4), which therefore remain identical to the vacuum

case, and are solved automatically by (4.1) provided that (2.8) holds. On the other hand,

because the tension term cancels in the longitudinal equations (2.5), as discussed in the

text following eq. (2.5), and τµ
µ = 0, we find

Rµ
ν =

2p

MD−2
D Bρ

δ(u) δ(D−4)(~x⊥) δ(ρ) δ(φ) δµ
v δu

ν , (4.3)

where we have used gD−2 uv/
√

gD−2 = 1, and hab = diag(1, B2ρ2) for the metric transverse

to the brane, as per (4.1). The only component of Rµ
ν which does not vanish trivially is

Rv
u, and its direct evaluation along the lines of, for example [33, 34], yields

Rv
u = δ(u)∇2

D−2f , (4.4)

where ∇2
D−2f = ~∇2

⊥f +∆2f is the Laplacian defined with respect to the part of the metric

(4.1) transverse to the shockwave, spanned by the coordinates ~x⊥ and ρ, φ, respectively.

Comparing (4.3) and (4.4) yields the equation for the shockwave profile that we were after:

∇2
D−2f =

2p

MD−2
D Bρ

δ(D−4)(~x⊥) δ(ρ) δ(φ) . (4.5)

This is the equation for the static potential of a ‘charge’ p at the origin, on the tip of

the cone in D − 2-dimensional space, which generates a force with a coupling strength

g ∼ 1
MD−2

D
B

. It is straightforward to write its solution, which is4

f = − 1

(D − 4)ΩD−3

2p

MD−2
D B

1

(~x2
⊥ + ρ2)

D−4
2

, (4.6)

4Since the Laplacian is D − 2-dimensional, and the ‘charge’ is at the origin, the solution must be of the

form f = Q

RD−4
, where R2 = ~x2

⊥ + ρ2. The normalization can be determined from applying Gauss law to

(4.5), yielding
R

d~S · ~∇f = 2p

M
D−2

D
B

and so Q = −
2p

(D−4)ΩD−3M
D−2

D
B

.
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where ΩD−3 = 2π
D−2

2

Γ(D−2
2

)
is the volume of a unit SD−3. Note that the gravitational lightning

rod effect, which we observed in the previous section, remains manifest in (4.5). Due to the

conical background, the effective coupling is renormalized from 1/MD−2
D to 1/(MD−2

D B),

and so it is sensitive to the brane tension: g ∼ 2π
2πMD−2

D
−λ

. Thus the gravitational coupling

becomes very strong as the tension approaches the fundamental scale MD. However, the

gravitational nonlinearities remain under control, being completely suppressed in the rela-

tivistic limit by the boosting of the source. We remark that the solution (4.6) is so simple

despite the conical structure of space because the stress-energy source is on the brane,

or equivalently the effective ‘charge’ is on the tip of the transverse cone. For a source

in the bulk off the tip, the potential of (4.6) would be more complicated. At distances

short compared to the displacement of the ‘charge’ from the tip the potential would be the

same as in a flat bulk, without coupling enhancement as the tip is too far to affect it. It

would asymptotically approach (4.6) as distance increases [39], and would reduce exactly

to it as the ‘charge’ is moved back to the tip of the cone. At any rate, the solution (4.6)

encapsulates the correct long distance behavior of the shockwave. We can finally write

down the gravitational field of a relativistic particle zipping along a codimension-2 brane

in D-dimensional space time:

ds2
D = 4dudv +

8p

(D − 4)ΩD−3M
D−2
D B

δ(u) du2

(~x2
⊥ + ρ2)

D−4
2

+ d~x2
⊥ + dρ2 + B2ρ2dφ2 . (4.7)

In fact this solution looks the same as the higher-dimensional shockwave in a locally flat

spacetime [35], the only exception being the conical enhancement of the coupling. The

solution (4.7) is an exact solution of the field equations (2.2), (2.4), (2.5), the brane is thin,

with a δ-function tension as in the vacuum case, but the total stress-energy tensor on the

brane is manifestly not equal to pure tension, as can be seen from (see eqs. (2.2), (4.2))

TA
B =

(

−λδµ
ν +

2p
√

gD−2
gD−2 uv δ(u) δ(D−4)(~x⊥) δµ

v δu
ν

)

δA
µδB

ν 1√
deth

δ(2)(y) . (4.8)

The solution (4.7) remains under control down to extremely short distances. The

reason the shockwave (4.7) evades the results of [13, 14] is that in the relativistic limit the

gravitational nonlinearities remain completely under control, as we have discussed above.

In (4.7), (4.8) it is clear where the nonlinearities have ‘gone’: they have been pushed into

the metric discontinuity ∝ δ(u) along the worldline of the source in (4.7), (4.8). While this

δ-function may appear frightful at the first glance, in fact its divergence is a coordinate

artifact that can be easily removed by a diffeomorphism discussed in [40, 41]. Using (4.1)

and (4.6) for notational brevity, note first that the shockwave is axially symmetric, ∂φf = 0.

Further introduce new notation, defining Xi = (~x⊥, ρ), such that (4.1) becomes ds2
D =

4dudv − 4δ(u)fdu2 + δijdXidXj + B2ρ2dφ2. Then define new coordinates u = ũ, v =

ṽ+fθ(ũ)−ũ(∇f)2, Xi = X̃i−2ũθ(ũ)∂̃if , where θ(ũ) is the step function, and new variables

are substituted in place of the old ones in the function f in these transformations. Using

d[θ(ũ)] = δ(ũ)dũ and ũδ(ũ) ≡ 0, and noting that δ(u)f(X) = δ(ũ)f(X̃), we can substitute

this change of variables in the metric (4.1), (4.6) to get, after a straightforward but tedious
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calculation, the expression

ds2
D = 4dũdṽ +

(

δij − 4ũθ(ũ)∂̃i∂̃jf + 4ũ2∂̃i∂̃kf ∂̃j ∂̃
kf

)

dX̃idX̃j + B2(ρ̃ − 2ũθ(ũ)∂̃ρf)2dφ2 ,

(4.9)

with the form of f(X̃) given in (4.6). This metric is manifestly well-behaved at ũ = 0.

There is still the singularity at the core of the source, at ~x⊥ = ρ = 0. Clearly, at any

finite distance |~x⊥| > 0 from the source along the brane, there is no bulk divergence at

all. The only singular limit arises in the case of first approaching ~x⊥ = 0 away from the

brane, and then moving up to it, at the tip of the cone. Although this singularity does

not infect the Ricci curvature, it will show up in the Riemann tensor, that depends on

objects like ∂j∂kf . This however is the usual short distance singularity associated with

any potential source, familiar from electrostatics or Newtonian gravity. In any case, one

expects that at some very short distance this singularity can be consistently smoothed out

by matter sector effects alone, for example by quantum mechanical fuzzing up of the source.

Therefore, the solution (4.7) is under control as a representation of the gravitational field

of a brane-localized particle. This shows that brane-localized sources by themselves are

not the culprit of the difficulties with matter-laden thin branes encountered in [13, 14], and

subsequently investigated in [15]–[18]. The real cause of these problems is that gravity is

not 4D close in, and so it spreads into the bulk causing strong nonlinear deformations at

distances on the order of the gravitational radius of the energy lump. But this should be

expected all along.

5. 4D limits

Having realized what the subtleties with placing matter sources on thin codimension-2

branes are, it is natural to ask once matter is included how one can recover 4D gravitational

force at large distances. Using a modification of our shockwave geometry (4.7), we will

argue here that the recovery of 4D Newton’s law may proceed as usual once the scales in

the theory are properly accounted for. We will focus on the case of a tensional 3-brane

in a 6D spacetime, although extending the argument to more dimensions with wrapped

branes should be straightforward. To proceed, let us close the bulk off in some way at a

finite distance from the 3-brane. This could be done in various ways (see [1]–[6], [38] for

examples). The simplest approach to recovering 4D gravity however is to ignore all the

details of compactification, and merely ask if the correct law at large distances can be so

retrieved.

A simple way to check if this happens is to model the compactification by imposing

some boundary conditions in the bulk, that remove the ‘exterior’. A natural trick would

be to use Neumann boundary conditions because they force the gradient of the potential

which would solve (4.5) to vanish on some boundary in the radial direction from our 3-

brane. This means that the radial component of the field strength would vanish, and

that the field lines bend around to become parallel with the 3-brane, so that they stop

diluting in the transverse directions. Thus the field strength must switch to the 4D law at
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large distances. However, implementing this procedure directly on a stationary field in a

compact space requires introducing unphysical ‘negative energy’ sources on the boundary,

by Gauss’s law, and dealing with them, while possible, is unwieldy [42].

To circumvent these issues, we will instead use periodic boundary conditions, imposing

them by placing images of the brane throughout the infinite bulk. Although the 3-brane

is a cone in the transverse dimensions, and it is hard to picture a periodic array of such

cones, we will use the fact that the deficit angle factors into the enhanced gravitational

coupling as in (4.6), and treat (4.6) as the shockwave on a plane. This should be sufficient

for our purposes here. Clearly, a consistent compactification mechanism would have to be

devised to properly account for such short distance issues, but we can nevertheless test in

this way if it can be expected to reproduce 4D gravity at all. So let us imagine that (4.6) is

promoted into a 2D lattice by translations in the two bulk directions along orthogonal unit

vectors ~e1 and ~e2. By linear superposition, the total shockwave profile of such an array in

D = 6 will be

fcompact = − p

2π2M4
6 B

∞
∑

n1,n2=−∞

1

~x2
⊥ + (~ρ − n1L~e1 − n2L~e2)2

, (5.1)

where ~ρ is the bulk component of the radius vector from the 3-brane at the origin to the

point where the potential is measured, and L is the lattice spacing. We can restrict to

|~ρ| <∼ L. At large distances on the brane transverse to the shock source, |~x⊥|2 À L2, we

can approximate the sum by an integral. Replacing n1,2 → y1,2 (with this normalization

yk are dimensionless), we note that

∞
∑

n1,n2=−∞

1

~x2
⊥ + (~ρ − n1L~e1 − n2L~e2)2

→ 1

L2

∫

plane

d2~y

(~y − ~ρ/L)2 + ~x2
⊥/L2

. (5.2)

To evaluate the integral (5.2) over an infinite plane, we shift the origin by a bulk translation

~y → ~y + ~ρ/L, without changing the measure of integration, and then using axial symmetry

around the center brane integrate over the polar angle φ about it. This yields

1

L2

∫

plane

d2~y

~y2 + ~x2
⊥/L2

=
2π

L2

∫ ∞

0
dy

y

y2 + ~x2
⊥/L2

, (5.3)

The remaining integral is formally infinite because of the logarithmically divergent contri-

bution of the upper limit of integration. This infinity is an unphysical infra-red divergence

arising from the contributions of ‘charges’ infinitely far away, because their uniform number

density far away overcompensates the potential shutdown with distance. The infinity is

unphysical since the divergent term is pure gauge, and we can remove it with a diffeomor-

phism. To do so, we should first regulate the integral (5.3) with a coordinate space cutoff

Λ À |~x⊥|/L, which yields

2π

L2

∫ ∞

0
dy

y

y2 + ~x2
⊥/L2

→ 2π

L2

∫ Λ

0
dy

y

y2 + ~x2
⊥/L2

=
π

L2
ln(

Λ2 + ~x2
⊥/L2

~x2
⊥/L2

) . (5.4)
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Next we decompose the logarithm as

π

L2
ln(

Λ2 + ~x2
⊥/L2

~x2
⊥/L2

) =
2π

L2
ln Λ − 2π

L2
ln(

|~x⊥|
L

) +
π

L2
ln(1 +

~x2
⊥

Λ2L2
)

=
2π

L2
ln Λ − 2π

L2
ln(

|~x⊥|
L

) +
π

L2

~x2
⊥

Λ2L2
+ . . . . (5.5)

where we have expanded the last logarithm in the top line using Λ À |~x⊥|/L. Further, we

substitute (5.5) into (5.1), and simultaneously perform the coordinate transformation

v → v + A θ(u) , (5.6)

in the metric (4.1), where A is a constant yet to be determined and θ(u) the step function.

Under this transformation, the shockwave profile changes to

f → f −A . (5.7)

Then we set A = − p
πL2M4

6B
ln Λ. This completely cancels the divergent term in the trans-

formed fcompact, allowing us to take the limit Λ → ∞ at will. In this limit, all the cutoff-

dependent polynomial corrections ∝ 1/Λ2n in (5.5) vanish without a trace. Hence as we

promised, the divergence is completely gauged away, leaving no effect behind. After intro-

ducing the 4D Planck mass M2
4 = L2M4

6 B, which is precisely the correct Gauss law formula

including the area of the extra-dimensional space, restricted to an elementary cell of the

lattice, we finally find that at large distances along the brane the shockwave converges to

fcompact =
p

πM2
4

ln(
|~x⊥|
L

) , (5.8)

The shockwave profile of eq. (5.8) is precisely the Aichelburg-Sexl 4D shockwave solution

correctly weighed with the 4D Planck’s constant — just as we have claimed! We see that

the compactification by periodic boundary conditions has reproduced the 4D limit of the

solution, with the correctly normalized 4D Planck mass, including the enhancement by the

deficit angle. The exact matching of the numerical coefficients should not be surprising

in spite of the simplicity of the setup, because of its covariance. Our ‘compactification

prescription’ merely introduced image ‘charges’ which restrict the bulk space to a finite

volume without disturbing the setup. The resulting periodicity together with the positivity

of the potential imply that there must exist equipotential surfaces around each charge in

the lattice where the potential takes its minimum, and so has vanishing gradients. This

construction is thus effectively imposing Neumann boundary conditions on the potential

minimal surfaces, without any auxiliary negative ’charges’. Based on our results, we expect

that detailed compactification mechanisms with general matter on codimension-2 branes

should work out when the matter disturbances of the compactification dynamics and the

proper regulators of the matter-laden 3-brane are determined using all the relevant scales

in the problem.
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6. Summary

In this note we have derived exact black hole and shockwave solutions localized on a

codimension-2 brane in D dimensions, with gravity governed by the bulk D-dimensional

Einstein-Hilbert action. The black hole solutions are higher-dimensional Schwarzschild

geometries with a polar deficit angle, which is interpreted as a manifestation of the brane’s

tension that renders the bulk conical. The solutions are a generalization of the AFV black

hole pierced by a cosmic string in 4D [22]. They include a 6D black hole on a 3-brane,

which can be viewed as an explicit example of a ‘small’ black hole residing on a 3-brane

in theories with large extra dimensions, with the horizon size smaller than the size of the

extra dimensions, which should be an interesting arena for explicit calculations of black

hole production and decay rates at the LHC [28]. Note, that although our solution (3.5)

reduces to 6D Schwarzschild when the brane tension is much smaller than the fundamental

scale, when the tension is large a black hole with a fixed mass, given by the Center-of-Mass

energy of the collision in which it is created, should have a larger radius as dictated by

eq. (3.8), and hence a greater entropy. This may improve the semiclassical approximation

used to compute black hole evolution. It would be interesting to test the precise prediction

with the brane tension contributions included, and also seek out other black hole examples,

e.g. with charges and angular momenta.

Our shockwave solutions can be viewed as infinite boost limits of brane-localized

black holes, although we find them by employing the cut-and-paste tricks of Dray and

’t Hooft [30]. They provide an explicit demonstration that gravity really does not obstruct

having localized sources on codimension-2 branes, but merely obscures their mathematical

description because of the strong nonlinearities at distances comparable to the gravitational

length of the source. For relativistic particles, the boost restores scaling symmetry pushing

the gravitational radius to zero, and putting nonlinear effects under control. Thus rela-

tivistic particles can be easily described as matter sources on thin branes, with δ-function

stress-energy. The residual short distance singularities that appear as the distance from the

source goes to zero should be expected to be resolved as usual, by short distance physics

in the core of the source, as for example the Coulomb singularities of electrostatics which

get smeared by quantum effects. In the case of an infinite locally flat bulk, the shockwave

profiles drop off with distance as 1/rD−4, i.e. as 1/r2 on a 3-brane in 6D, manifestly dis-

playing the dimensionality of the full spacetime. As a check, we reconsider the shockwave

on a 3-brane when we close the bulk off by imposing periodic boundary conditions with a

lattice spacing L. In this case we recover the correct logarithmic variation with distance

of the 4D Aichelburg-Sexl shockwave at transverse distances along the brane larger than

L. These examples support our view that there exist solutions sourced by stress-energy

other than tension, independently of the internal structure of the brane and without ever

putting higher derivative graviton operators in the bulk. In general, however, to regulate

their mathematical description correctly, in order to restore the thin brane limit at large

distances, one must account properly for the scales where the nonlinearities of the grav-

itational field become important. While that may be technically involved, it should be

possible in principle.
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